POSTULADO  NA TERMODINÂMICA QUÂNTICA GRACELI.


TODA ENTROPIA PRODUZ ENTALPIA E VICE-VERSA, MAS NÃO EXATAMENTE NA MESMA PROPORÇÃO.


 FÍSICA GRACELI DE : {R[RT, Dte, dG]}.

REFERENCIL.

TENSORIAL.

DIMENSÕES TEMPO ESPAÇO.

DIMENSÕES DE GRACELI [CATEGORIAS DE GRCELI, ESTADOS DE GRACELI, DIMENSÕES DE GRACELI]


,     G* =  = [          =     / G* =  = [      


 ,  / {R[RT, Dte, dG]}.   G* =  = [          =   / {R[RT, Dte, dG]}.  / G* =  = [   .




 ,  / {R[RT, Dte, dG]}.    / G* =  = [          ] ω           .       =   / {R[RT, Dte, dG]}.   / G* =  = [          ] ω           .





   MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS. EM :






 efeito Graceli - Compton



Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz[4].

  • Luz como uma partícula;
  • Dinâmica Relativística;
  • Trigonometria.

O resultado final nos dá a equação do espalhamento de Compton:

  
/ {R[RT, Dte, dG]}.   / G* =  = [          ] ω           .

Onde:

 é o comprimento de onda do fóton antes do espalhamento,
 é o comprimento de onda do fóton depois do espalhamento,
me é a massa do elétron,
 é conhecido como o comprimento de onda de Compton,
θ é o ângulo pelo qual a direção do fóton muda,
h é a constante de Planck, e
c é a velocidade da luz no vácuo.

Coletivamente, o comprimento de onda de Compton é .




 efeito Graceli - Dirac

A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).

campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.

A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:

 / {R[RT, Dte, dG]}.   / G* =  = [          ] ω           .

onde  e sua adjunta de Dirac  são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.





A equação propriamente dita é dada por:

/ {R[RT, Dte, dG]}.   / G* =  = [          ] ω           .

na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.




Equação de Schrödinger Dependente do Tempo (geral)




/ {R[RT, Dte, dG]}.   / G* =  = [          ] ω           .




equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.

A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.

Detalhes[editar | editar código-fonte]

A equação de Pauli é mostrada como:

/ {R[RT, Dte, dG]}.   / G* =  = [          ] ω           .

Onde:

  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.
  •  são os dois componentes spinor da onda, podem ser representados como .

De forma mais precisa, a equação de Pauli é:

/ {R[RT, Dte, dG]}.   / G* =  = [          ] ω           .

Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes  de Pauli.

Comentários